FURTHER CADINENE DERIVATIVES FROM HETEROTHECA GRANDIFLORA

S. EL-DAHMY, T. SARG, N. M. FARRAG, A. M. ATEYA, J. JAKUPOVIC*, F. BOHLMANN* and R. M. KINGT

Pharmacy College, Pharmacognosy Dept. Zagazig University, Zagazig, Egypt; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany, †Smithsonian Institution, Department of Botany, Washington, DC 20560, U.S.A.

(Received 17 December 1984)

Key Word Index-Heterotheca grandiflora; Compositae; sesquiterpenes; cadinene derivatives.

Abstract—The reinvestigation of Heterotheca grandiflora from Hawaii gave in addition to compounds isolated previously five new cadinene derivatives.

INTRODUCTION

The chemical investigation of five species of the genus Heterotheca (tribe Astereae) gave mainly cadinene derivatives [1-5]. We now have studied the constituents of H. grandiflora Nutt. collected in Hawaii, and compared them to these isolated from H. grandiflora collected in Arizona [3]. In addition to the compounds isolated previously some further cadinene derivatives were obtained. These were the 2,14-dihydroxycalamene esters 3-5, δ -cadinen-2-one (6) and δ -cadinen-14-oic acid (7).

RESULTS AND DISCUSSION

The esters 3-5 could be separated in part by HPLC which gave a mixture of the angelate 3 and the 2-methylbutyrate 4 and the isobutyrate 5. The structures were deduced from the ¹H NMR spectra (Table 1) which were close to that of 2 [3]. The nature of the ester groups followed from the typical ¹H NMR signals. As usual the chemical shifts, especially that of H-14, differed in the spectra of the unsaturated and saturated esters.

The structure of 6 followed from the 1H NMR spectrum (Table 1) which was close to that of the corresponding 9-angeloyloxy derivative [3]. The structure of 7, which was transformed by addition of diazomethane to the corresponding methyl ester 8, was deduced from the molecular formula and the 1H NMR spectral data of 7 and 8 (Table 1). The presence of a carbonyl group at C-7 caused a considerable downfield shift of H-1 β . Spin decoupling allowed the assignment of all signals though some were overlapped multiplets. Furthermore the 13 C NMR data of 8 (see Experimental) agreed well with the proposed structure.

Though the Hawaiian collection mainly gave the same cadinene derivatives as the Arizona collection [3], some clear differences are obvious. In particular the absence of cadalene derivatives in the former collection is remarkable.

EXPERIMENTAL

The air dried aerial parts collected in Hawaii, July 1984 (500 g, voucher RMK 9314 deposited in the US National Herbarium)

were extracted with MeOH-Et₂O-petrol (1:1:1) and the extract obtained after removal of MeOH insoluble material was submitted to CC (silica gel) (conditions as in ref. [6]). Six fractions were obtained: 1 (petrol), 2 (Et₂O-petrol, 9:1), 3 (Et₂O-petrol, 1:3), 4 (Et₂O-petrol, 1:1), 5 (Et₂O) and 6 (Et₂O-MeOH, 9:1). TLC of fraction 1 (silica gel PF 254, petrol) gave 50 mg δ -cadinene and repeated TLC of fraction 2 (Et₂O-petrol, 20:1) gave 10 mg 6 (R, 0.4) and 80 mg 7 (R_f 0.13). Fraction 3 was treated with CH_2N_2 and separated by TLC (Et₂O-petrol, 1:1) affording 40 mg 8 (R, 0.81), 55 mg 7-desmethyl-2-hydroxycalamene and 2-hydroxycalamene [3] $(R_1, 0.60)$ as well as 50 mg of a mixture of 3-5 $(R_1, 0.67)$. HPLC (RP 8, McOH-H₂O, 4:1, flow rate, 3 ml/min, 100 bar) gave 30 mg 3 and 4 (ca 1:1, R, 11 min) and 10 mg 5 (R, 7.5 min). TLC of fraction 4 (Et₂O-petrol, 1:1, two developments) gave 23 mg 2-hydroxy-7-oxo-7-desmethyl calamene [3] and 15 mg cubenol. TLC of fraction 5 (Et₂O) gave 33 mg 2,14-dihydroxycalamene [3] and TLC of fraction 6 (Et₂O-MeOH, 9:1) afforded 20 mg 2-hydroxycalamen-14-oic acid [3]. Known compounds

Short Reports 1475

Table 1. ¹H NMR spectral data of 3-8 (400 MHz, CDCl₃, TMS as int. standard)

Н	3	4	5	6	7	8
1	}			3.52 d	3.55 br dd	3.30 br dd
1′	6.64 s	6.61 s	6.60 s	2.82 br d	2.15 m	2.15 m
2	_		_	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	} 2.13 m
2′	_	_		– .))
4	6.99 s	6.98 s	6.98 s	6.74 br s	5.36 br s	5.77 br s
5	_		_	2.82 m	2.69 br d	2.64 br d
7	3.06 <i>dddd</i>	3.02 dddd	3.01 <i>dddd</i>	2.82 m	2.69 br d	2.64 br d
В	2.24 m	2.24 m	2.24 m	} 2.10 m	2.10 br d	2.07 br d
B ')) .)	} 2.10 m	2.54 br d	2.46 br d
)	> 1.65 m	}1.65 m	} 1.65 m	} 1.60 m	1.68 <i>ddd</i>	1.66 <i>ddd</i>
9′	J	}	3	} 1.00 m	1.15 ddd	1.15 <i>ddd</i>
10	2.58 m	2.58 m	2.57 m	•	1.06 <i>dddd</i>	1. 07 dddd
11	2.24 m	2.24 m	2.24 m	2.1 m	2.0 m	2.0 m
12	0.99 d	0.99 d	1.00 d	1.02 d	0.96 d	0.96 d
13	0.70 d	0.70 d	0.70 d	0.86 d	0.77 d	0.77 d
14	4.33 dd	4.24 dd	4.23 dd	1.65 br s	_	_
14'	4.15 dd	4.11 dd	4.11 dd	1.03 Dr 3	_	
15	2.19 br s	2.19 br s	2.19 br s	1.78 dd	1.68 br s	1.65 br s
OR	6.07 qq	2.39 tq	2.57 qq	_	_	3.70 s
	1.99 dq	1.75 ddq	1.17 d			
	1.91 dq	1.49 ddq	1.18 d			
	-	0.90 t				
		1.15 <i>d</i>				

^{*}Obscured multiplet.

J (Hz): Compounds 3-5: 7, 8 = 7, 8' \sim 6; 7, 14 = 5; 7, 14' = 11; 11, 12 = 11, 13 = 7; 14, 14' = 12; compound 6: 1, 1' = 17; 4, 15 = 5, 15 \sim 2; 11, 12 = 11, 13 = 7; compounds 7 and 8: 1, 1' = 8, 9' = 9, 9' = 9', 10 = 12; 1', 2 = 5; 1', 2' \sim 2; 1, 2 = 1, 2' = 5, 10 \sim 10; 9, 10 = 3.5; 8, 9 = 8', 9 \sim 5; 11, 12 = 11, 13 = 7.

were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material. All compounds showed no impurities by ¹H NMR spectra and TLC.

2,14-Dihydroxycalamen-14-O-angelate and [2-methylbutyrate] (3 and 4). Colourless oil; IR v_{max}^{CCL} cm⁻¹: 3600 (OH), 1740 (CO₂R), 1710 (C=CCO₂R); MS m/z (rel. int.): 318.219 (1.5) and 316.203 (1.0) [M]⁺, (calc. for C₂₀H₃₀O₃: 318.219 and for C₂₀H₂₀O₃: 316.203), 216 [M - RCO₂H]⁺ (28), 173 [216 - C₃H₇]⁺ (100), 158 [173 - Me]⁺ (12), 145 [173 - CO]⁺ (10), 85 [C₄H₉CO]⁺ (6), 83 [C₄H₇CO]⁺ (14), 57 [85 - CO]⁺ (20), 55 [83 - CO]⁺ (18); [α]_D = +6 (CHCl₃; c = 0.7).

2,14-Dihydroxycalamen-14-O-isobutyrate (5). Colourless oil; IR $v_{\text{max}}^{\text{CCL}}$ cm⁻¹: 3600 (OH), 1740 (CO₂R); MS m/z (rel. int.): 304 [M]⁺ (0.5) (calc. for C₁₉H₂₈O₃: 304), 216 [M - RCO₂H]⁺ (10), 173 [216 - C₃H₇]⁺ (100), 71 [C₃H₇CO]⁺ (8).

Cadinen-2-one (6). Colourless oil; $IR v_{max}^{CCL_4} cm^{-1}$: 1680 (C=CC=O); MS m/z (rel. int.): 218.167 [M]⁺ (26) (calc. for $C_{13}H_{22}O$: 218.167), 203 [M - Me]⁺ (5), 175 [M - C_3H_7]⁺ (100), 148 [M - CH₂=CHCHMe₂, RDA]⁺ (28), 133 [148 - Me]⁺ (15), 105 (31), 91 (24).

Cadinen-14-oic acid (7). Colourless crystals, mp 104°. Addition

of CH₂N₂ gave the methyl ester **8**, colourless oil; IR $\nu_{\text{max}}^{\text{CCL}_4}$ cm⁻¹: 1720, 1640 (C=CCO₂R); MS m/z (rel. int.): 248.178 [M]⁺ (46) (calc. for C₁₆H₂₄O₂: 248.178), 233 [M - Me]⁺ (4), 205 [M - C₃H₇]⁺ (26), 189 [M - CO₂Me]⁺ (58), 174 [205 - OMe]⁺ (30), 145 [174 - CHO]⁺ (100); ¹³C NMR (CDCl₃) (C-1-C-15): 26.9, 28.0, 134.9, 123.2, 40.9, 148.8, 123.1, 32.7, 20.8, 44.7, 26.8, 23.0, 21.6, 169.7, 15.6 and 51.1 (OMe).

REFERENCES

- 1. Bohlmann, F. and Zdero, C. (1976) Chem. Ber. 109, 2021.
- 2. Bohlmann, F. and Zdero, C. (1979) Phytochemistry 18, 1185.
- Bohlmann, F., Zdero, C., Robinson, H. and King, R. M. (1979) Phytochemistry 18, 1675.
- Bohlmann, F., Gupta, R. K., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 2982.
- Bohlmann, F., Wolfrum, C., Jakupovic, J., King, R. M. and Robinson, H. (1985) Phytochemistry 24, 1101.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.